Usage of Geosynthetics for Road Construction

U.K. Guru Vittal
Central Road Research Institute
New Delhi
vittal.crri@gmail.com

Geosynthetics

- **Geosynthetics** – Generic name for
 - Geotextiles – Woven and Non woven
 - Geogrids – Flexible and Rigid
 - Geonets, Geostrips, Geomembranes, etc
- **Major Polymers used** – Polypropylene and Polyester
- **Others** - PVC, Polyamide, Polyethylene, Polyvinyl alcohol, Aramids, etc
- Polypropylene is preferred material in North America and Europe
- Polyester is relatively cheaper in Asia
Few Examples of NHAi Projects

<table>
<thead>
<tr>
<th>Project</th>
<th>Purpose</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visakhapatnam</td>
<td>In Marshy/ Slushy Soils</td>
<td>1,08,100 sq m</td>
</tr>
<tr>
<td>Vallarpadam, Cochin</td>
<td>Geotextile (non woven) as separation/ filtration layer</td>
<td>4,30,260 sq m</td>
</tr>
<tr>
<td>Tuticorin</td>
<td>Below sub-grade</td>
<td>2,55,000 sq m</td>
</tr>
<tr>
<td>Paradip</td>
<td>(i) for high embankment over band drains</td>
<td>1,04,250 sq m</td>
</tr>
<tr>
<td></td>
<td>(ii) below sub-grade</td>
<td>40,640 sq m</td>
</tr>
<tr>
<td>JNPT Package II (SH-54 & Aamra Marg)</td>
<td>Woven geotextile below embankment</td>
<td>64,600 sq m</td>
</tr>
</tbody>
</table>

Geosynthetic Usage for Road Works

- **Reinforcement** – *Strengthening of soil slopes, RE Walls for Bridge approaches, Construction on soft soils, reinforcing pavement layers*
- **Consolidation** – *Removal of water from saturated marine clay layers*
- **Separation** – *Partitioning of two adjacent but dissimilar materials to prevent intermixing*
- **Erosion control, Filtration & Drainage, Crack arresting layer in wearing course*
Pioneering Studies on Usage of Geotextiles by CRRI

- **Objective of Study:** To study relative efficacy of geotextile as compared to use of conventional techniques for BC soils

- **Location of Sites:** Ten roads in Gujarat and Maharashtra each 4-6 Km

Typical test specifications
- Control section of conventional construction
- Geotextile with thin sand cushion
- Conventional section with moorum blanket
- Conventional section with lime stabilised BC soil
- Conventional section with sand blanket

Ref – AVSR Murty, S.Mathur, et al, 1992
Laying of Geotextile on Subgrade

Pavement Performance Evaluation (3 Yrs)

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Test Specification</th>
<th>Rut depth (mm)</th>
<th>Deflection (mm)</th>
<th>Distress (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control Section</td>
<td>6 – 18</td>
<td>1.6 – 2.5</td>
<td>12 – 15</td>
</tr>
<tr>
<td>2</td>
<td>Section with Geotextile</td>
<td>6 – 9</td>
<td>1.5 – 2.0</td>
<td>1.0 – 6.0</td>
</tr>
<tr>
<td>3</td>
<td>Section with Moorum</td>
<td>8 – 14</td>
<td>1.7 – 3.5</td>
<td>3.0 – 8.0</td>
</tr>
<tr>
<td>4</td>
<td>Section with lime stabilised BC Soil</td>
<td>7 – 20</td>
<td>2.5 – 3.8</td>
<td>5 – 17.0</td>
</tr>
<tr>
<td>5</td>
<td>Section with sand blanket</td>
<td>4 – 14</td>
<td>1.7 – 2.2</td>
<td>1.0 – 5.0</td>
</tr>
</tbody>
</table>
Condition of Geotextile After Three Years

Strength Loss After Three Years in Service
Outcome of Study

- Geotextiles are an effective substitute for conventional sand blanket course

- Its use is very cost effective when good quality sub-base materials are not available within economic lead and CBR of subgrade is low i.e. less than 3

Use of Geotextile as Separator in NHDP Work

(Four-laning work on NH-6, Dankuni to Kolaghat, Km 17 to 72, West Bengal)
Use of Geosynthetics in Pavement

- Embankments on soft clay deposits: Band drains, high strength geotextile as basal reinforcement, Geocells with geogrid/ geotextile reinforcement
- Distinguishing feature: Accelerating consolidation or providing reinforcing effect

Ground Improvement Using Geosynthetics

- Embankments on soft clay deposits – Band drains, high strength geotextile as basal reinforcement, Geocells with geogrid/ geotextile reinforcement
- Distinguishing feature – Accelerating consolidation or providing reinforcing effect

Stitcher for Installation
Efficacy of Band Drains, Quality Control, Testing & Specifications

Geotextile as Separator/ Basal Reinforcement

Geocell Mattress
Reinforced Soil Embankment Using Geogrids – Okhla Flyover

- First geogrid reinforced fly ash approach embankment constructed in the country (1996), Performance has been very good
- Length of embankment – 59 m, Height varied from 5.9 to 7.8 m
- Ash utilised – 2,700 cubic metre, Opened to traffic in 1996

Reinforced Fly ash Embankment at Sarita Vihar Flyover

- Length of reinforced approach embankment 105 m (Badarpur site) 78 m (Delhi side)
- Maximum Height – 5.25 m, Width – 22.5 m
- Fill material Pond ash from Badarpur thermal power station
- Reinforcement Friction ties made of high tenacity polyester yarns
- Opening to traffic Feb 2001

Reinforced Earth – New Trends

- Reinforced Earth – Few hundred RE Walls have been constructed in India
- Full head fascia panels to overcome misalignment problems
- Anchoring of reinforcement at both ends to withstand earthquake forces
- Gabion faced RE Walls to improve aesthetic look
- Failure of RE walls – Mismatch between design and actual construction at site

Failure of RE Walls – Some Case Studies

- Case study from Central India – Reinforced earth embankment constructed to extend a hill cut terrace and road constructed over the reinforced earth embankment
- Flexible geogrids used as reinforcement
- Flexible soft fascia – Wrapping geogrids around good earth filled jute bags adopted
- Turfing of fascia
Cross section of RE Embankment

Construction of RE Embankment
Construction of RE Embankment

Failure of RE Embankment
Causes for Failure

- Proper compaction **not done at the edges (soft fascia) near the bags**
- High vertical spacing **between geogrids – 0.9 m**
- Sagging of bags **occurred due to watering**
- Geogrids after wrapping inserted for a length of **50 cm only**, no jointing **between successive layers of geogrids**
- Pull out failure of geogrids and fascia damaged at many locations

Repair work of RE Embankment
Failure of RE Wall Built with Block Fascia

RE Wall Failure showing the storm water drainage pipe
Construction of Retaining Wall in front of RE Wall

Collapse of RE Wall

Shortcomings in Design, Materials and Quality Control Aspects During Construction Need to be Addressed
Agro Based geotextile

- **100 per cent biodegradable**
- **Can be adopted for**
 - Erosion control
 - Vertical drains for consolidation of clays
 - Horizontal drains for stabilisation of slopes
 - Subsurface drains
- **Jute and Coir based geotextile**

Jute Geotextiles as Reinforcement - Kakinada

- The topsoil up to a depth of 2 m from the ground level
 - silty sand and clay mixture
- Natural moisture content – 70 to 85%, Bulk density – 1.30 to 1.45 gm/cc
- Undrained shear strength – 4.6 to 6.0 kN/sq. m
- Compression index (C_c) – 0.15 to 0.29

<table>
<thead>
<tr>
<th>Jute Geotextile Properties</th>
<th>Test value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>5 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>750 gsm</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>15 kN/m</td>
</tr>
<tr>
<td>Elongation</td>
<td>10%</td>
</tr>
<tr>
<td>Puncture resistance</td>
<td>350 N</td>
</tr>
<tr>
<td>Overlap length</td>
<td>300 mm</td>
</tr>
<tr>
<td>Type of fabric</td>
<td>Woven</td>
</tr>
</tbody>
</table>

Kakinada Port – Use of JGT

Use of Coir Based Geotextile for Road Construction at Kerala
Use of Coir Based Geotextile at Visakhapatnam Port

Use of Jute Geotextiles for Improving Performance of PMGSY Roads

- **Objective** – To study the use of jute geotextile in the road pavement
 - As a drainage layer
 - As a separator
 - Capillary cut-off
 - Shoulder improvement
 - Side slope erosion protection

- **Pilot project taken up in 10 roads across five states under varying soil/ climatic conditions**
 by CRRI & JMDC
Laying of bitumen treated jute geotextile in West Bengal

Laying of woven and non woven jute geotextile in Orissa
Use of Jute geotextile in trench drains on Joshimath-Malari Road

Ref: O.P. Yadav, Kanwar Singh et al, 1998

Use of Jute Geotextile in Trench Drains

Jute geotextile laid in position

A view of completed drain
Erosion Control & Landslide Mitigation

- Loss of excessive material from the surface of natural or manmade slope by the action of wind or water
- Woven jute geogrid with square grids used
- Mass of geogrid – 750 gsm

Ratighat, 1984

Erosion control on Steep slope - Lambidhar, Masoorie

Slope at Masoorie protected with Geogrid

Ref – T.S.Natarajan, Jai Bhagwan et al
Stabilisation of Hill Slope – Kaliasaur 1996

Erosion Control of Slopes

Use of jute geotextile for erosion control,
Sataun, H.P, 1997
Use of Synthetic Geogrids for Erosion Control at Varunavat, Uttarkashi

Laying Jute Geotextile at Sonapur Landslide on NH 44

JMDC Photos
Use of Coir Geotextile at NH 39

Use of Jute Geotextile at Varunavat, Uttarkashi
Erosion Control of Road Embankment at Rann of Kutch

- Embankment height 1.5 – 2.0 m
- Silty soil having high salt content
- Erosion due to surface runoff as well as wave action of water flooding on both sides of alignment
- Use of non woven geotextiles to contain erosion of side slopes
- Failure of geotextile layer due to improper anchoring
Filtration/Drainage

- Geotextile filter system
- To retain soil particles
- Permit water to pass through

Natural Filter Cake Formation

1 = Original soil structure
2 = Filter zone
3 = Filter cake
4 = Geosynthetic
5 = Revetment
Geosynthetic Usage in Road Works – The Way Forward

- **Under PPP regime**, Road Projects would be taken up on **DBFO Basis**
- Geosynthetic usage can be boosted in case it is techno economically feasible for the **Concessionaire**
- For proven applications like RE walls, Erosion Control and Ground Improvement usage will be enhanced
 - QC/ QA of the geosynthetics to be ensured
 - Use of right type of materials/ correct techniques
 - Evolving our own codes/ guidelines
 - Establishing countrywide geosynthetic testing / certification facilities
Geosynthetic Usage in Road Works – The Way Forward

- For potential application areas like reinforcing pavement layers, for bituminous overlay, drainage / separation, etc usage can be further enhanced
 - R&D Efforts required to refine the techniques
 - Evolving rational design procedures and solving problems associated with construction
 - Taking up field demonstration projects followed by performance monitoring
 - Application to be cost effective

- Agro based geotextiles – Price & environmental advantage over synthetic product is vital, ideally suited for erosion control applications

Usage of Geotextiles in Road Works – Some Issues

- What Geotextiles can do and can not do?
 - Right type of material for appropriate application
 - Geotextile marketing strategies of producers
 - Increase in CBR value of subgrade soil – Myth or Reality?

- Filter Cake Formation – When and How?

- Whether to make geotextile usage compulsory – Should it not compete with other technologies?

- Technical issues related to agro based geotextiles – Width, laying procedure, etc

- Supply of geotextiles – Imported or Indigenous

- Consistent quality of geotextiles
Mere usage of Geosynthetics will not ensure good performance. Proper selection of Geosynthetics, correct design and quality assurance are essential.

U.K. Guru Vittal
098688 58380
vittal.crri@gmail.com
vittal.crri@nic.in